Distribution exponentielle de Scipy

Distribution exponentielle de Scipy
Le langage de programmation Python a rendu le calcul mathématique, statistique et scientifique extrêmement simple et facile en fournissant des bibliothèques incroyablement utiles et simples. La bibliothèque Scipy propose une longue liste de fonctions utilisées pour développer une variété d'applications. C'est l'une des fonctions couramment utilisées de la bibliothèque Scipy pour générer la distribution exponentielle. Le package des statistiques de la bibliothèque SCIPY a une fonction expon () qui est utilisée pour générer la variable aléatoire continue exponentielle. Cet article vous emmène dans le guide étape par étape pour expliquer comment le Scipy.Statistiques.La fonction expo () fonctionne.

Qu'est-ce que la distribution exponentielle?

La distribution exponentielle peut être définie comme une distribution de probabilité continue qui est principalement utilisée dans les statistiques et la théorie des probabilités. Le but de cela est de décrire la fréquence à laquelle un événement se produira. La distribution exponentielle est une série d'occurrences indépendantes qui se déroulent de manière cohérente à un taux moyen. Il est fréquemment utilisé pour calculer la durée de la durée d'un événement pour se produire. Le concept de la distribution exponentielle est le même dans les statistiques et Python. Python fournit juste une fonction automatique pour créer la distribution exponentielle de la distribution exponentielle des statistiques. Ce guide expliquera délibérément comment calculer la distribution exponentielle à l'aide de la bibliothèque SCIPY.

Cavalier.Statistiques.Fonction expon () python

La fonction expon () fournie par le package des statistiques et la bibliothèque SCIPY est une variable aléatoire continue exponentielle définie avec un certain paramètre de forme et un format standard. Il faut plusieurs paramètres requis et facultatifs pour compléter ses spécifications et renvoie la variable aléatoire continue exponentielle. Voyons et apprenons la syntaxe de la fonction expon () pour comprendre de quels paramètres avons-nous besoin pour le fournir.

Syntaxe du scipy.Statistiques.Expon ()

En général, la fonction expon () suit la fonction de densité de probabilité qui est la suivante:

La syntaxe du scipy.Statistiques.La fonction expon () est la suivante:

La fonction expon () fonctionne avec diverses méthodes de la classe RV_continuous et chaque méthode prend différents paramètres. Cependant, nous avons répertorié tous les paramètres pour vous aider à comprendre quel type de paramètres d'entrée avez-vous besoin pour fournir toute méthode RV_Continu.

Le paramètre «x» est utilisé pour fournir les quantiles dans l'objet comme le tableau. Le paramètre «Q» est utilisé pour définir la probabilité de la queue inférieure ou supérieure dans un objet comme un tableau. Le paramètre «loc» représente l'emplacement. Le paramètre «échelle» représente l'échelle. Le paramètre «taille» représente la forme des variables aléatoires. Et enfin, le paramètre «Moments» est utilisé pour spécifier les moments à calculer à partir de la combinaison de MVSK. Le MVSK est une combinaison de moments qui peuvent être effectués avec n'importe quelle fonction de classe RV_Contious. Le «M» de MVSK représente la moyenne, «V» représente la variance, «S» représente le biais de Fisher, et «K» représente le kurtosis de Fisher.

Par défaut, le paramètre Moments est MV. En conséquence, la fonction expon () renvoie la variable aléatoire continue exponentielle. Voyons quelques exemples pour apprendre à utiliser la fonction expon () dans les programmes Python.

Exemple 1:

Créons une variable aléatoire continue exponentielle. Considérez l'exemple de code donné dans ce qui suit:

de Scipy.Statistiques d'importation
num = expon.numargs
[] = [0.4,] * num
ecrv = expon ()
Print ("Variable aléatoire continue exponentielle: \ n \ n", ECRV)

Tout d'abord, la bibliothèque SCIPY est importée dans le programme pour appeler le package des statistiques et la fonction expon (). La fonction expon () est utilisée pour appeler la méthode numargs afin de créer la variable aléatoire continue exponentielle. Ce programme est très simple et court, vous pouvez facilement le comprendre et l'utiliser dans vos programmes. Maintenant, voyons la sortie générée dans ce qui suit:

Exemple 2:

Nous avons appris à créer la variable aléatoire continue exponentielle avec la bibliothèque Scipy et sa fonction expon (). Laissez-nous apprendre à générer la distribution de probabilité avec les variations aléatoires exponentielles. Considérez l'exemple de code donné dans ce qui suit:

Importer Numpy comme NP
de Scipy.Statistiques d'importation
Q = np.Arange (0.09, 1, 0.2)
ECRV = Expon.VR (échelle = 3, taille = 15)
Print ("Variés aléatoires continues exponentiels: \ n \ n", ECRV)
ex = expon.pdf (q, loc = 0, échelle = 2)
print ("\ nprobability Distribution: \ n", ex)

Tout d'abord, la bibliothèque Numpy est importée dans le programme en tant que NP car nous avons besoin de la bibliothèque Numpy pour créer un éventail de données Numpy. Après cela, la deuxième bibliothèque que nous avons importée est la bibliothèque Scipy, le package des statistiques et leur fonction expon (). Le tableau de données est déclaré avec le NP.Fonction Arange (). La variable aléatoire continue exponentielle est créée avec l'expon.Méthode RVS () en passant l'échelle = 3 et taille = 15. Le tableau de données composé est transmis à l'expon.Fonction PDF () pour créer la distribution de probabilité. Le PDF signifie une fonction de densité de probabilité, et il est utilisé pour calculer la distribution de probabilité. L'emplacement pour la distribution de probabilité est donné en tant que loc = et l'échelle est donnée sous forme d'échelle = 2. Maintenant, vérifions quel résultat la fonction expon () générée. Voir la sortie suivante:

Exemple 3:

Nous avons appris à créer la variable aléatoire continue exponentielle et la distribution de probabilité en utilisant la méthode PDF de la classe RV_Continu. Laissez-nous apprendre à afficher la variable aléatoire continue exponentielle dans cet exemple. Considérez le code suivant:

Importer Numpy comme NP
de Scipy.Statistiques d'importation
Importer Matplotlib.pypllot comme plt
ecrv = np.lispace (0, np.minimum (RV.distr.B, 25))
Print ("Variés aléatoires continues exponentiels: \ n \ n", ECRV)
tracé = plt.Terrain (ECRV, RV.PDF (ECRV))

Dans cet exemple de programme, nous importons d'abord la bibliothèque Numpy. Pour ce faire, l'instruction «Importer Numpy As NP» est utilisée car nous devons utiliser les fonctions de la bibliothèque Numpy. Après cela, la deuxième bibliothèque est Scipy qui est importée pour utiliser la fonction expon (). La troisième et dernière bibliothèque que nous avons importée est Matplotlib. Il est utilisé pour tracer les données du graphique. Les données pour créer la variable aléatoire continue exponentielle sont générées avec le NP.Fonction lispace (). Pour tracer les variantes aléatoires continues exponentielles générées, nous utilisons le PLT.Fonction de tracé (). Maintenant, voyons les variantes aléatoires continues exponentielles et leur graphique tracé dans le résultat suivant:

Conclusion

Ce guide sert un aperçu rapide et court de la distribution exponentielle Scipy. Ici, nous avons appris le concept de distribution exponentielle dans les statistiques et quelle est la théorie des probabilités. Après cela, nous avons appris à créer la variable aléatoire continue exponentielle en tant que programme Python. Nous avons également appris la fonction expon () de la bibliothèque Scipy pour créer la variable aléatoire continue exponentielle dans un programme Python. À l'aide d'exemples, nous avons démontré comment utiliser la fonction expon () dans un programme Python pour générer et tracer la variable aléatoire continue exponentielle.